Recalling the equations of an inductive element in d-q reference frame, in per unit variables: \begin{equation} \left\{ \begin{array}{l} v_{d} = \displaystyle \frac{1}{\omega_{base}} L \displaystyle \frac{di_{d}}{dt} - \omega L i_{q} + Ri_{d} \\ \ \\ v_{q} = \displaystyle \frac{1}{\omega_{base}} L \displaystyle \frac{di_{q}}{dt} + \omega L i_{d} + Ri_{q} \end{array} \right. \end{equation} Considering static behavior of the inductive element in a reduced model: \begin{equation} \left\{ \begin{array}{l} v_{d} = - \omega L i_{q} + Ri_{d} \\ v_{q} = \omega L i_{d} + Ri_{q} \end{array} \right. \rightarrow \begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R & -\omega L \\ \omega L & R \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} \end{equation} Solving the system for the current: \begin{equation} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} R & -\omega L \\ \omega L & R \end{bmatrix} ^{-1} \begin{bmatrix} v_d \\ v_q \end{bmatrix} \end{equation} The matrix of a static inductive element remains: \begin{equation} \begin{bmatrix} R & -\omega L \\ \omega L & R \end{bmatrix} ^{-1} = \frac{1}{R^2+(\omega L)^2} \begin{bmatrix} R & \omega L \\ -\omega L & R \end{bmatrix} \end{equation} Recalling the equations of a capacitive element in d-q reference frame, in per unit variables: \begin{equation} \left\{ \begin{array}{l} i_{d} = \displaystyle \frac{1}{\omega_{base}} C \displaystyle \frac{dv_{d}}{dt} - \omega C v_{q} + \frac{1}{R}v_{d} \\ \ \\ i_{q} = \displaystyle \frac{1}{\omega_{base}} C \displaystyle \frac{dv_{q}}{dt} + \omega C v_{d} + \frac{1}{R}v_{q} \end{array} \right. \end{equation} Considering static behavior of the capacitive element in a reduced model: \begin{equation} \left\{ \begin{array}{l} i_{d} = - \omega C v_{q} + \displaystyle \frac{1}{R}v_{d} \\ \ \\ i_{q} = \omega C v_{d} + \displaystyle \frac{1}{R}v_{q} \end{array} \right. \rightarrow \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} 1/R & -\omega C \\ \omega C & 1/R \end{bmatrix} \begin{bmatrix} v_d \\ v_q \end{bmatrix} \end{equation} Solving the system for the voltage: \begin{equation} \begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} 1/R & -\omega C \\ \omega C & 1/R \end{bmatrix} ^{-1} \begin{bmatrix} i_d \\ i_q \end{bmatrix} \end{equation} The matrix of a static capacitive element remains: \begin{equation} \begin{bmatrix} 1/R & -\omega C \\ \omega C & 1/R \end{bmatrix} ^{-1} = \frac{1}{\left(1/R\right)^2+(\omega C)^2} \begin{bmatrix} 1/R & \omega C \\ -\omega C & 1/R \end{bmatrix} \end{equation}