Synchronous machine
$$
\left[\begin{array}{c}
\psi_{s d} \\
\psi_{s q} \\
\psi_{s 0} \\
\psi_{exc} \\
\psi_{k d_{1}} \\
\psi_{k d_{2}} \\
\psi_{k q_{1}} \\
\psi_{k q_{2}} \\
\psi_{k q_{3}}
\end{array}\right]= L \left[\begin{array}{c}
i_{s d} \\
i_{s q} \\
i_{s 0} \\
i_{exc} \\
i_{k d_{1}} \\
i_{k d_{2}} \\
i_{k q_{1}} \\
i_{kq_{2}} \\
i_{k q_{3}}
\end{array}\right]
$$
$$
L=\left[\begin{array}{cc}
-L_{d q 0} & L_{a d q 0} \\
-L_{a d q} ^T & L_{k}\end{array}\right]
$$
$$
\left\{ \begin{array}{cc}
L_{d}=L_{m d}+L_{\sigma s} \\
L_{q}=L_{m q}+L_{\sigma s} \\
\end{array} \right.
$$
$$
L_{d q} 0=\left[\begin{array}{ccc}L_{d} & 0 & 0 \\0 & L_{q} & 0 \\0 & 0 & L_{\sigma s}\end{array}\right]
$$
$$
L_{\text {adq0}} =\left[\begin{array}{cccccc}L_{m d} & L_{m d} & L_{m d} & 0 & 0 & 0 \\0 & 0 & 0 & L_{m q} & L_{q q} & L_{m q} \\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]
$$
$$
\begin{align}
L_k = &\left[\begin{array}{cccccc}
L_{m d} & L_{m d} & L_{m d} & 0 & 0 & 0 \\
L_{m d} & L_{m d} & L_{m d} & 0 & 0 & 0 \\
L_{m d} & L_{m d} & L_{m d} & 0 & 0 & 0 \\
0 & 0 & 0 & L_{m q} & L_{m q} & L_{m q} \\
0 & 0 & 0 & L_{m q} & L_{m q} & L_{m q} \\
0 & 0 & 0 & L_{m q} & L_{m q} & L_{m q}
\end{array}\right] \nonumber \\
+& \left[\begin{array}{cccccc}
L_{\sigma exc} & & & & & \\
& L_{k d_{1}} & & & & \\
& & L_{k d_{2}} & & & \\
& & & L_{k q_{1}} & & \\
& & & & L_{kq_{2}} & \\
& & & & & L_{k q_{3}}
\end{array}\right]
\end{align}
$$
The classical synchronous machine swing equation is shown below:
$$
\begin{equation}
\begin{array}{ccl}
T_m - T_e & = & 2H\cdot \dfrac{\mathrm{d}\omega_r}{\mathrm{d}t} \\
\dfrac{\mathrm{d}\delta_r}{\mathrm{d}t} & = & \omega_b \cdot (\omega_r - \omega_{ref})
\end{array}
\end{equation}
$$